
International Journal of Scientific & Engineering Research Volume 4, Issue 2, February-2013 1
ISSN 2229-5518

IJSER © 2013
http://www.ijser.org

Smart Differ - A better tool for code review
Arul Siva Murugan Velayutham, Ramakrishna Rajanna, Devesh Yamparala

Abstract— Understanding and reviewing code changes will need the context of the existing code and how the change is going to affect the
new call flow. Current code reviews are based textual file diff. They do not have any language semantic information of changed code. This
paper focuses on using some semantic information and present an alternative code diff visualization to help the review process.

Index Terms— Code review, Code changes, Software Engineering, Code Understanding, Code Learning, Code Flow, Code diff

—————————— ——————————

1 INTRODUCTION
urrently file based textual differ[1][2] is provided by code-
review tools. The file based differs provide an excellent
mechanism to do code reviews. However reviewers face

still difficulties in

 Identifying where to start the review: In the
change-list where is the logical start of the changed
code and how the changes are related cannot be
shown with the current tools. They just list the files
in lexicographical order for review. Reviewer has
to create and remember a mental model of the new
control flow.

 Identifying refactoring code: Simple move detec-
tion within files can be shown in current tools but
detecting code moves (refactoring) across files or
unfaithful (slight modifications) within files is not
possible with the current tools.

 Navigating though changes: Navigation with the
change-list is tough when lots of files present in the

change. It gets tougher for the reviewer when he
wants to switch between files inside and outside
the change-list multiple times.

 Looking at similar changes together: When a
method signature has changed, reviewer would
like to look at all the callers to check the usage.

In this paper we present call-graph based smart differ and

show how alternative visualization can improve the code re-
view process.

Call-graph based differ shows the diff between the call-
graphs for the two versions of the change-list. The nodes are
methods/functions, which have changed. The nodes show in-
line diff of the changed code. The edges are color coded to
differentiate new/deleted calls in the change-list. The call-
graph will only show the changed (new/deleted/modified)
nodes (methods).

Code-bubbles kind of navigation can be used to expand the
call graph to look at unchanged code in the same view.

C

Fig. 1 Smart Differ Design

International Journal of Scientific & Engineering Research Volume 4, Issue 2, February-2013 2
ISSN 2229-5518

IJSER © 2013
http://www.ijser.org

2 DESIGN OF SMART DIFFER
There are two parts to Smart differ service:
2.1 Backend pipeline
Listens for Code Change review requests and analyzes the
changes to constructs call-graphs for base version and
changed version of the code. Subsequently it merges the call
graphs of base version and changed versions with node and
edge annotations. It generates a layout of the merged call-
graph for the presentation and stores the data to persistence
storage.

2.2 Frontend
The merged call-graph is fetched from data store; layout is

computed and rendered via the Smart Differ front-end.

3 ARCHITECTURE OF PIPELINE
The Smart Differ Back-end Pipeline had been implemented as
work-flow model; (i.e) the components are split in such a way
that once task has been completed at one component it is
pushed to the next in the pipeline (fig. 1). Pipeline has the fol-
lowing components arranged in that order

1. Change Listener
2. Snapshot Manager
3. Build Manager
4. Diff Graph builder

3.1 Change Listener
The Change listener(s), implements a Goops [3] subscriber for
change-list creation notifications.
On receiving the notification, the change is filtered based on
the following criteria:
Changes with more than threshold delta lines (at least 10 lines)
of code (Graph visualization is less useful than text diff for

small changes) in the programming language files. The filtered
changes are passed to the next component: Snapshot Manager

3.2 Snapshot Manager
This stage creates two code snapshots reflecting the base ver-
sion and the changed version of files in the change-list. The
two versions are needed to construct the respective call
graphs. Snapshot manager also handles the file line difference
and generates the data needed for the in-line diff that required
in the later part of the pipeline.

3.3 Build Manager
Build tool (similar to ctags [4]) is slightly modified to do the
static analysis of the code. Build manager also identifies the
targets that would get affected by the current files that are
changed. The modified build tool is used to build Graph Index
that is similar to ctags output for both code snapshots.

The generated index will have the set of nodes, each node will
have properties like location, fully/partially qualified name,
type etc. Type of the node will tell if its a method/function,
keyword, signatures, parameters etc. The tool also generates
the associations between nodes. Association represents
relationships like caller-callee, inheritance etc between two
nodes.

3.4 Diff Graph Builder
At this stage changed files are analyzed to get the changed
methods (only nodes that are of type methods and are
changed or added or deleted) & their “caller-callee” associa-
tions. With the collected set of nodes and associations the call
graph is generated individually for the old and new revision
of the methods that were changed. Then an in-line diff of the
two revisions of the method contents are generated with lines

Fig 2 Example output of SmartDiffer

International Journal of Scientific & Engineering Research Volume 4, Issue 2, February-2013 3
ISSN 2229-5518

IJSER © 2013
http://www.ijser.org

 In the old versions or deleted lines are highlighted
with a red font and strikeout.

 In the new versions or added lines are highlighted
with a bold green font

 Other lines are left as it is.
 In order to read the method correctly, inter lacing of lines
are done in such a way that old versions group of lines (consti-
tuting a continues changed lines) are placed before the corre-
sponding new lines.

1. Merging old and new methods are done directly if the
signature has not changed. However if the signature
of the method has changed then mapping the old and
new method is done using the following heuristics. If
the name of the method is same but parame-

ters/return types are different then the two methods
are considered for in-line diff.

2. If method is renamed then we need to find the best
match from the list of old methods. Best match is
computed based on various weighted parameters:

 Number of matching lines,
 Percentage of changed lines
 Size of the methods
 Location of the methods
 Presence of overloaded functions

The associations are used as edges in the call-graph and anno-
tated with new/old/both. The nodes and associations are
recorded in a persistent storage.

Fig. 3. Smart Differ Output before and after barycenter method of minimizing crossing

International Journal of Scientific & Engineering Research Volume 4, Issue 2, February-2013 4
ISSN 2229-5518

IJSER © 2013
http://www.ijser.org

4 ARCHITECTURE OF FRONTEND
When the reviewer requests for the change-list the front-end
server consults the layout engine for placement of the nodes [5]
and returns diff graph for display.

4.1 Layout Engine
The Front-end talks to the Layout Engine, which computes
topological order of the nodes to show caller-callee relation-
ship. Barycentric [6] method is used to rearrange the nodes to
get minimal edge crossings. Barycenter method was chosen as
it works well for nodes that are fixed in a layer.

4.2 Client Display

The client renders the graph as a bubble view (fig. 2) with
changed methods and callee-caller associations between the
nodes with proper color. It also handles the other user actions
for navigating, zooming and panning of the graph. It also has
short cuts for reviewing only old code, only new code, or in-
lineed diff graph. It can expend the unchanged code by talking
to the code repository. This gives the other context to the
reviewer.

5 RESULTS

This tool was used experimented with 100 change-lists. We
observed that the change-lists with delta lines in the range of
50 to 200 lines were better reviewed using Smart Differ than
simple file diff (fig. 3). Refactoring change-lists were also
better viewed in smart-differ. Bigger change-lists cluttered the
visualization with too many nodes. However by showing
them as many sub-graphs separately and with better keyboard
shortcut navigations, reviewers' experience can be improved
for bigger change-lists as well.

6 CONCLUSION
This new techniques can be extended for any of the program-
ming languages and will certainly help the author as well as
the reviewer for quicker understanding of the changes. With
keyboard shortcuts and mouse gestures, reviewers can get
more context of the code under review easily. It is also possible
to extend the caller-callee associations to any other associa-
tions and can be used to ignore the variable's name changes as
well. Presenting the semantic information graphically, provid-
ing easy navigation and in-line diffs significantly improves the
code-review process.

7 REFERENCES
[1] D. S. Hirschberg, ’A Linear Space Algorithm for Computing Maximal Com-

mon Subsequences,’ CACM 18 (1975) 341-3.
[2] J.W. Hunt and M.D. MclIroy An Algorithm for Differential File Comparison
[3] Goops - Googles Publisher Subscriber Techinique:

http://pubsubhubbub.googlecode.com/svn/trunk/pubsubhubbub-core-
0.3.html

[4] Ctags -EXUBERANT CTAGS : http://ctags.sourceforge.net
[5] John Warfield. Crossing Theory and Hierarchy Mapping. IEEE Transactions

on Systems, Man, and Cybernetics, SMC-7(7):505–523, July 1977.
[6] Ismaeel, Alaa A. K.; Kumar Shukla, Pradyumn; Schmeck, Hartmut Efficient

barycenter algorithm for drawing hierarchical graphs with minimum edge
crossings

. ————————————————

 Arul Siva Murugan Velayutham was working at Google India,
Bangalore. E-mail: arulsmv@gmail.com

 Ramakrishna Rajanna is currently working at Google India, Ban-
galore. E-mail: ramakrishna.r@gmail.com

 Devesh Yamparala was an intern in Google India, Bangalore.
Email: dev344@gmail.com

